Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[$(\mu_3 - N, N - dibenzyldithiocarbamato \kappa^4$ S,S':S:S')silver(I)]

Xia Yin, Mu-Biao Xie, Wei-Guang Zhang* and Jun Fan

School of Chemistry and the Environment, South China Normal University, Guangzhou 510006, People's Republic of China Correspondence e-mail: wgzhang@scnu.edu.cn

Received 28 June 2007; accepted 18 July 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.014 Å; R factor = 0.045; wR factor = 0.080; data-to-parameter ratio = 14.5.

The title Ag^{I} coordination polymer, $[Ag(C_{15}H_{14}NS_{2})]_{n}$, was synthesized by a solvothermal reaction of AgNO₃ with sodium N,N-dibenzyldithiocarbamate in a methanol solution. The compound displays a helical structure and each Ag^I ion is fourcoordinated by four S atoms from two dithiocarbamate ligands and can be described as a distorted tetrahedral configuration. While the Ag^I ions are bridged by both S atoms of the dithocarbamate group to form the polymeric structure, the Ag...Ag distance of 3.0633 (11) Å suggests weaker metal bonding between Ag^I ions.

Related literature

For general background, see Akerström (1959); Zhang et al. (2002); Liu et al. (2006); Song et al. (2006). For related structures, see: Yin et al. (2007); Anacker-Eickhoff et al. (1982); Li et al. (2005); Greenwood & Earnshaw (1989). For synthesis, see: Fan et al. (2004). For related literature, see: Tang et al. (2004).

Experimental

Crystal data $[Ag(C_{15}H_{14}NS_2)]$ $M_r = 380.26$ Trigonal, P31

a = 15.6505 (19) Åc = 5.0120 (14) ÅV = 1063.2 (3) Å³

Z = 3
Mo $K\alpha$ radiation
$\mu = 1.70 \text{ mm}^{-1}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2002) $T_{\min} = 0.785, T_{\max} = 0.848$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.080$ S = 1.002500 reflections 172 parameters 1 restraint

Table 1

Selected bond lengths (Å).

C1 - N1	1.336 (9)	$S1-Ag1$ $S2-Ag1$ $S2-Ag1^{ii}$ $Ag1-Ag1^{i}$	2.478 (2)
C1 - S2	1.720 (8)		3.010 (2)
C1 - S1	1.734 (8)		2.860 (2)
$S1 - Ag1^{i}$	2.446 (2)		3.0633 (11)
SI-Agi	2.440 (2)	Ag1-Ag1	5.0055 (11)

Symmetry codes: (i) -y + 1, x - y - 1, $z + \frac{1}{3}$; (ii) x, y, z + 1.

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation of Guangdong Province, China (grant No. 990463) and the National Natural Science Foundation of China (grant No. 29561002).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2287).

References

- Akerström, S. (1959). Ark. Kemi, 14, 413-420.
- Anacker-Eickhoff, H., Hesse, R., Jennische, P. & Wahlberg, A. (1982). Acta Chem. Scand. B, 36, 251-259.
- Bruker (1998). SHELXTL. Version 6.12. Bruker AXS Inc, Madison, Wisconsin, USA.
- Bruker (1999). SAINT. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2002). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fan, J., Yin, X., Zhang, W. G., Zhang, Q. J., Lai, C. S., Tiekink, E. R. T., Fan, Y. & Huang, M. Y. (2004). Acta Chim. Sinica, 62, 1626-1634.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Greenwood, N. N. & Earnshaw, A. (1989). Chemistry of the Elements. Oxford: Pergamon Press.
- Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.
- Liu, N., Fan, J., Zhang, W.-G., Yin, X. & Xie, M.-B. (2006). Acta Cryst. E62,
- m2588-m2590. Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen,
- Germany Song, Y.-W., Yu, Z. & Zhang, Q.-F. (2006). Acta Cryst. C62, m214-m216.
- Tang, K.-L., Xie, X.-J., Zhao, L., Zhang, Y.-H. & Jin, X.-L. (2004). Eur. J. Inorg. Chem. pp. 78-85.
- Yin, X., Xie, M.-B., Zhang, W.-G., Fan, J. & Zeller, M. (2007). Acta Cryst. E63, m2063-m2064.
- Zhang, W.-G., Zhong, Y., Tan, M.-Y., Liu, W.-S. & Su, C.-Y. (2002). Chin. J. Chem. 20, 420-423.

7409 measured reflections

2500 independent reflections

1519 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Absolute structure: Flack (1983),

with 1227 Friedel pairs Flack parameter: 0.07 (5)

 $\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$

T = 293 (2) K $0.15 \times 0.10 \times 0.10 \text{ mm}$

 $R_{\rm int} = 0.094$

		0
.g-	s	- Ag
s-	Ag	S
۹.		-Ag
		n

supplementary materials

Acta Cryst. (2007). E63, m2273 [doi:10.1107/S1600536807035180]

Poly[(μ_3 -*N*,*N*-dibenzyldithiocarbamato- $\kappa^4 S$,*S*':*S*:*S*')silver(I)]

X. Yin, M.-B. Xie, W.-G. Zhang and J. Fan

Comment

Synthesis and crystal structure of the Ag(I) complexes with dialkyldithiocarbamates have been widely studied owing to variable coordination configurations since the first description by Akerström (1959). Monomeric, dimeric, hexameric and polymeric structure *etc* in the Ag(I) complexes have been reported in the past decade years, which was indicated that differently substituted alkyl groups and reaction conditions may play crucial roles in the formation of a variety of complexes with unprecedented structures (Zhang *et al.*, 2002; Liu *et al.*, 2006; Song *et al.*, 2006). We have maintained an interest in silver(I)-dithiocarbamate complexes and report herein the structure of the title compound, $[(AgC_{15}H_{14}NS_{2})_3]_n$.

In the solid state, the title complex has a one-dimensional chain-like polymeric structure and the each repeated Ag(I) units consists of three silver(I) cations and three ligand anions (Fig. 1). Each Ag(I) cation is coordinated with four sulfur atoms from three *N*,*N*-dibenzyldithiocarbamate (DBTC) ligands and shown as an distorted tetrahedral coordination environment. There are two types of sulfur atoms: S1 and the symmetry equivalents are acting as bridges between each two silver atoms with Ag—S distances of 2.446 (1) and 2.478 (2) Å (Table 1). On the other hand, the distances between the Ag(I) atoms and the S2 atoms (2.860 and 3.010 Å) are appreciably different, and both are much longer than the Ag—*S*(dithiocarbamate) distances [2.5–2.6 Å] (Song *et al.*, 2006; Yin *et al.*, 2007), but smaller Ag1—C1—S1 angles of 94.92° suggests the weaker Ag1—S2 bonding in the compound, as pointed out by Li *et al.* (2005). This grees with the related compounds reported previously [Anacker-Eickhoff *et al.*, 1982; Song *et al.*, 2006]. Thus the DBTC displays both roles of chelating ligand and *asym*-bridging ligand.

The Ag—Ag distances between adjacent Ag^I ions are 3.0633 (11) Å, which are longer than 2.886 Å found in metallic Ag (Greenwood *et al.*, 1989) but shorter than the sum of the van der Waals radii of Ag atoms. This may suggest the existence of the weaker metal bonding between Ag^I ions (Tang *et al.*, 2004). So multi-dentate bridging coordination modes of the chelating ligands and the agentophilic Ag—Ag interactions linked in the [(AgC₁₅H₁₄NS₂)₃] units leads to formation of the one-dimensional chain-like coordination polymer (Fig. 2).

Experimental

The title compound was prepared by the reaction of $AgNO_3$ (0.170 g, 1.0 mmol), sodium N, *N*-dibenzyldithiocardbanmate (NaDBTC) (0.296 g, 2.0 mmol) (Fan *et al.*, 2004) and anhydrous methanol (7 ml) in an 15 ml Teflon liner sealed in a Parr autoclave. The autoclave was placed in a programmable furnace and heated to 353 K for 2 days. Yellow crystals were obtained after cooling to room temperature at 5 K.h⁻¹ (yield 50%). The compound is hardly soluble in general organic solvent.

Refinement

All H atoms were placed in calculated positions with C—H = 0.93 Å (aromatic) and 0.97 Å (methylene) and refined in riding mode with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids.

Fig. 2. The packing diagram of the title compound viewed down the b axis (H atoms have been omitted for clarity).

$Poly[(\mu_3-N,N-dibenzyldithiocarbamato-\kappa^4S,S':S:S')silver(I)]$

Crystal data	
$[Ag(C_{15}H_{14}NS_2)]$	Z = 3
$M_r = 380.26$	$F_{000} = 570$
Trigonal, P3 ₁	$D_{\rm x} = 1.782 {\rm ~Mg~m}^{-3}$
Hall symbol: P 31	Melting point = $491-492$ K
<i>a</i> = 15.6505 (19) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
b = 15.6505 (19) Å	Cell parameters from 2450 reflections
c = 5.0120 (14) Å	$\theta = 2.4 - 25.0^{\circ}$
$\alpha = 90^{\circ}$	$\mu = 1.70 \text{ mm}^{-1}$
$\beta = 90^{\circ}$	T = 293 (2) K
$\gamma = 120^{\circ}$	Block, yellow
V = 1063.2 (3) Å ³	$0.15 \times 0.10 \times 0.10 \text{ mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	2500 independent reflections
Radiation source: fine-focus sealed tube	1519 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.094$
T = 293(2) K	$\theta_{\text{max}} = 25.2^{\circ}$
φ and ω scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2002)	$h = -18 \rightarrow 18$

$T_{\min} = 0.785, T_{\max} = 0.848$	$k = -18 \rightarrow 18$
7409 measured reflections	$l = -6 \rightarrow 6$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.045$	$w = 1/[\sigma^2(F_o^2)]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.080$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.00	$\Delta \rho_{max} = 0.46 \text{ e} \text{ Å}^{-3}$
2500 reflections	$\Delta \rho_{min} = -0.41 \text{ e } \text{\AA}^{-3}$
172 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), with 1227 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.07 (5)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	1.0066 (5)	0.2099 (6)	0.5559 (15)	0.0355 (19)
C2	1.0318 (6)	0.3398 (6)	0.8847 (15)	0.043 (2)
H2A	0.9870	0.3301	1.0303	0.051*
H2B	1.0825	0.3273	0.9528	0.051*
C3	1.0786 (5)	0.4436 (6)	0.7943 (16)	0.039 (2)
C4	1.0607 (7)	0.5107 (7)	0.9319 (19)	0.053 (2)
H4	1.0165	0.4894	1.0739	0.064*
C5	1.1086 (8)	0.6088 (7)	0.857 (2)	0.067 (3)
H5	1.0963	0.6529	0.9504	0.081*
C6	1.1742 (7)	0.6428 (7)	0.646 (2)	0.069 (3)
H6	1.2070	0.7092	0.6005	0.083*
C7	1.1905 (7)	0.5768 (8)	0.506 (2)	0.064 (3)
Н7	1.2335	0.5980	0.3613	0.077*

supplementary materials

C8	1.1424 (7)	0.4788 (6)	0.5810 (17)	0.051 (2)
H8	1.1537	0.4347	0.4835	0.062*
C9	0.8849 (6)	0.2674 (6)	0.5893 (16)	0.041 (2)
H9A	0.8627	0.2342	0.4187	0.049*
H9B	0.8997	0.3350	0.5667	0.049*
C10	0.8041 (6)	0.2174 (6)	0.7892 (17)	0.040 (2)
C11	0.7728 (6)	0.2713 (7)	0.9324 (17)	0.050 (2)
H11	0.8028	0.3389	0.9036	0.059*
C12	0.6973 (6)	0.2274 (7)	1.1197 (18)	0.054 (3)
H12	0.6766	0.2649	1.2147	0.065*
C13	0.6544 (7)	0.1282 (8)	1.161 (2)	0.060 (3)
H13	0.6040	0.0976	1.2853	0.072*
C14	0.6844 (6)	0.0740 (7)	1.0219 (19)	0.052 (3)
H14	0.6539	0.0063	1.0515	0.063*
C15	0.7590 (7)	0.1168 (6)	0.8386 (18)	0.052 (2)
H15	0.7794	0.0785	0.7471	0.062*
N1	0.9764 (4)	0.2672 (4)	0.6704 (13)	0.0360 (16)
S1	0.93514 (15)	0.12847 (14)	0.3071 (5)	0.0439 (5)
S2	1.11785 (16)	0.21987 (18)	0.6397 (5)	0.0543 (7)
Ag1	1.07051 (5)	0.10767 (5)	0.12225 (17)	0.0688 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.023 (4)	0.036 (5)	0.045 (5)	0.012 (4)	0.005 (4)	0.006 (4)
C2	0.050 (6)	0.040 (5)	0.032 (5)	0.018 (5)	0.000 (4)	-0.012 (4)
C3	0.036 (5)	0.038 (5)	0.038 (5)	0.016 (4)	-0.006 (4)	0.006 (4)
C4	0.051 (5)	0.039 (6)	0.060 (6)	0.016 (5)	0.002 (5)	0.004 (5)
C5	0.081 (8)	0.054 (7)	0.073 (8)	0.038 (6)	-0.014 (7)	-0.012 (6)
C6	0.056 (7)	0.047 (7)	0.085 (9)	0.010 (6)	-0.007 (6)	0.022 (6)
C7	0.050 (6)	0.067 (7)	0.056 (7)	0.015 (6)	0.001 (5)	0.016 (6)
C8	0.063 (6)	0.034 (5)	0.047 (6)	0.016 (5)	-0.005 (5)	0.008 (5)
C9	0.046 (5)	0.035 (5)	0.048 (6)	0.024 (4)	0.004 (5)	0.008 (4)
C10	0.038 (5)	0.053 (6)	0.040 (5)	0.032 (5)	-0.003 (4)	0.010 (5)
C11	0.044 (5)	0.057 (6)	0.057 (6)	0.033 (5)	0.009 (5)	0.009 (5)
C12	0.057 (6)	0.067 (7)	0.061 (7)	0.048 (6)	0.018 (5)	0.006 (5)
C13	0.056 (6)	0.071 (7)	0.058 (7)	0.037 (6)	0.020 (5)	0.017 (6)
C14	0.041 (6)	0.040 (5)	0.071 (7)	0.016 (5)	0.001 (5)	0.008 (5)
C15	0.063 (6)	0.050 (6)	0.048 (6)	0.033 (5)	0.008 (5)	0.006 (5)
N1	0.034 (4)	0.033 (4)	0.045 (4)	0.019 (3)	0.003 (4)	0.004 (3)
S1	0.0467 (14)	0.0406 (13)	0.0462 (13)	0.0232 (12)	0.0014 (11)	0.0026 (12)
S2	0.0424 (14)	0.0696 (18)	0.0624 (17)	0.0367 (14)	0.0043 (12)	0.0062 (14)
Ag1	0.0639 (5)	0.0686 (6)	0.0880 (5)	0.0438 (5)	0.0161 (5)	-0.0017 (5)

Geometric parameters (Å, °)

C1—N1	1.336 (9)	С9—Н9В	0.9700
C1—S2	1.720 (8)	C10—C11	1.370 (11)
C1—S1	1.734 (8)	C10—C15	1.387 (10)

C2—C3	1.480 (10)	C11—C12	1.392 (11)
C2—N1	1.487 (9)	C11—H11	0.9300
C2—H2A	0.9700	C12—C13	1.365 (11)
C2—H2B	0.9700	C12—H12	0.9300
С3—С8	1.376 (10)	C13—C14	1.350 (12)
C3—C4	1.398 (12)	С13—Н13	0.9300
C4—C5	1.381 (13)	C14—C15	1.369 (11)
C4—H4	0.9300	C14—H14	0.9300
C5—C6	1.380 (13)	C15—H15	0.9300
С5—Н5	0.9300	S1—Ag1 ⁱ	2.446 (2)
C6—C7	1.375 (13)	S1—Ag1	2.478 (2)
С6—Н6	0.9300	S2—Ag1	3.010 (2)
C7—C8	1.381 (12)	S2—Ag1 ⁱⁱ	2.860 (2)
С7—Н7	0.9300	Ag1—S1 ⁱⁱⁱ	2.446 (2)
С8—Н8	0.9300	Ag1—S2 ^{iv}	2.860 (2)
C9—N1	1.489 (9)	Ag1—Ag1 ⁱⁱⁱ	3.0633 (11)
C9—C10	1.493 (10)	Ag1—Ag1 ⁱ	3.0633 (11)
С9—Н9А	0.9700		
N1—C1—S2	121.1 (6)	С11—С10—С9	119.9 (8)
N1—C1—S1	119.2 (6)	C15—C10—C9	122.1 (8)
S2—C1—S1	119.6 (5)	C10-C11-C12	121.8 (8)
C3—C2—N1	113.4 (6)	C10-C11-H11	119.1
С3—С2—Н2А	108.9	C12—C11—H11	119.1
N1—C2—H2A	108.9	C13—C12—C11	118.4 (8)
С3—С2—Н2В	108.9	C13—C12—H12	120.8
N1—C2—H2B	108.9	C11—C12—H12	120.8
H2A—C2—H2B	107.7	C14—C13—C12	120.7 (9)
C8—C3—C4	117.5 (8)	C14—C13—H13	119.7
C8—C3—C2	122.6 (8)	С12—С13—Н13	119.7
C4—C3—C2	119.9 (8)	C13—C14—C15	121.1 (9)
C5—C4—C3	120.0 (9)	C13-C14-H14	119.4
C5—C4—H4	120.0	C15-C14-H14	119.4
C3—C4—H4	120.0	C14—C15—C10	120.1 (8)
C6—C5—C4	121.5 (10)	C14—C15—H15	120.0
С6—С5—Н5	119.3	C10—C15—H15	120.0
С4—С5—Н5	119.3	C1—N1—C2	123.8 (6)
C7—C6—C5	119.0 (9)	C1—N1—C9	123.2 (6)
С7—С6—Н6	120.5	C2—N1—C9	113.0 (6)
С5—С6—Н6	120.5	C1—S1—Ag1 ⁱ	107.1 (3)
C6—C7—C8	119.5 (9)	C1—S1—Ag1	94.9 (3)
С6—С7—Н7	120.3	Agl ⁱ —S1—Agl	76.92 (6)
С8—С7—Н7	120.3	C1—S2—Ag1 ⁱⁱ	102.2 (2)
C3—C8—C7	122.6 (9)	S1 ⁱⁱⁱ —Ag1—S1	171.87 (8)
С3—С8—Н8	118.7	S1 ⁱⁱⁱ —Ag1—S2 ^{iv}	85.02 (8)
С7—С8—Н8	118.7	S1—Ag1—S2 ^{iv}	102.21 (7)
N1—C9—C10	112.3 (6)	S1 ⁱⁱⁱ —Ag1—Ag1 ⁱⁱⁱ	52.01 (6)

supplementary materials

N1—C9—H9A	109.1	S1—Ag1—Ag1 ⁱⁱⁱ	123.76 (6)
С10—С9—Н9А	109.1	S2 ^{iv} —Ag1—Ag1 ⁱⁱⁱ	88.38 (5)
N1—C9—H9B	109.1	S1 ⁱⁱⁱ —Ag1—Ag1 ⁱ	120.83 (6)
С10—С9—Н9В	109.1	S1—Ag1—Ag1 ⁱ	51.07 (5)
Н9А—С9—Н9В	107.9	S2 ^{iv} —Ag1—Ag1 ⁱ	140.89 (5)
C11—C10—C15	118.0 (8)	Ag1 ⁱⁱⁱ —Ag1—Ag1 ⁱ	86.91 (2)

Symmetry codes: (i) -y+1, x-y-1, z+1/3; (ii) x, y, z+1; (iii) -x+y+2, -x+1, z-1/3; (iv) x, y, z-1.

Fig. 2

